Minggu, 06 Mei 2012

makalah peptida dan ikatan peptida


Pembimbing: Muis Patta
Makalah Kimia Organik
Ikatan PEPTIDA


Disusun oleh:

III C

Fasdilah Ali
Nursamsi Erika
Rizky Mayan sari
Yusfirawati Hakim
Rahmawati
Sry Hardianti
St. Suryana Mursidi
Elisa
Adekayanthy F. S





KATA PENGANTAR


Segala puji dan syukur Kami panjatkan kehadirat Allah SWT, atas limpahan rahmat dan hidayah-Nya sehingga Makalah Kami yang berjudul “Ikatan Peptida” dapat terselesaikan.
Penyusunan makalah kami ini dapat terselesaikan karena adanya dukungan dan bantuan dari berbagai pihak. Untuk itu, pada kesempatan ini Kami mengucapkan terima kasih kepada :
1.      Bapak Abdul Muis Patta sebagai Guru Mata Pelajaran Kimia Organik Sekolah Menengah Analis Kimia Makassar.
2.      Teman-teman sekalian yang senantiasa bekerja sama dan memberikan motivasi kepada Kami, sehingga kami mampu menyelesaikan makalah ini.
Kami menyadari bahwa dalam tugas makalah ini banyak terdapat kekurangan dan kesalahan, olehnya itu kami mengharapkan kritik dan saran yang sifatnya membangun dari pembaca untuk penyusunan selanjutnya.
Makassar,  23 April 2012


             Kelompok III






DAFTAR ISI



Halaman
HALAMAN JUDUL............................................................................................ iii
KATA PENGANTAR.......................................................................................... 1
DAFTAR ISI......................................................................................................... 2
BAB I PENDAHULUAN.................................................................................... 3
A.    Latar Belakang Masalah....................................................................... 3
B.     Rumusan Masalah................................................................................ 3
C.     Tujuan Penulisan.................................................................................. 3
BAB II ISI............................................................................................................. 4
A.    Peptida dan Ikatan Peptida........................................................... ..... 4
B.     Sifat dan Analisis Peptida.................................................................. 7
BAB III PENUTUP............................................................................................ 18
Kesimpulan......................................................................................... 18
DAFTAR PUSTAKA.......................................................................................... 19







BAB I
PENDAHULUAN
A.    Latar Belakang
Peptida merupakan molekul yang terbentuk dari dua atau lebih asam amino. Jika jumlah asam amino masih di bawah 50 molekul disebut peptida, namun jika lebih dari 50 molekul disebut dengan protein. Ikatan peptida terjadi jika atom nitrogen pada salah satu asam amino berikatan dengan gugus karboksil dari asam amino lain. Peptida terdapat pada setiap makhluk hidup dan berperan pada beberapa aktivitas biokimia. Peptida dapat berupa enzimhormonantibiotik, dan reseptor.
Suatu peptida ialah suatu amida yang dibentuk dari dua asam amino atau lebih. Ikatan amida antra suatu gugus a-amino dari suatu asam amino dan gugus karboksil dari asam amino lain disebut ikatan peptida. Reaksi yang terpenting dari asam amino adalah pembentukan ikatan peptida.
B.     Rumusan Masalah
Berdasarkan latar belakang masalah yang dikemukakan di atas, maka kami  merumuskan permasalahan sebagai berikut :
1.     Apa yang dimaksud dengan Peptida, ikatan Peptida pada asam amino dan Protein?
2.     Bagaimana Pembuatan ikatan Peptida, sifat serta analisis peptida?

C.    Tujuan Penulisan
Adapun tujuan penulisan adalah sebagai berikut :
1.      Untuk mengidentifikasi pengertian Peptida dan ikatan Peptida
2.      Untuk mengetahui cara pembuatan ikatan Peptida, sifat, serta analisis sintesis.




PEPTIDA DAN IKATAN PEPTIDA
Peptida merupakan molekul yang terbentuk dari dua atau lebih asam amino. Jika jumlah asam amino masih di bawah 50 molekul disebut peptida, namun jika lebih dari 50 molekul disebut dengan protein. Asam amino saling berikatan dengan ikatan peptida. Ikatan peptida terjadi jika atom nitrogen pada salah satu asam amino berikatan dengan gugus karboksil dari asam amino lain. Peptida terdapat pada setiap makhluk hidup dan berperan pada beberapa aktivitas biokimia. Peptida dapat berupa enzimhormonantibiotik, dan reseptor
Suatu peptida ialah suatu amida yang dibentuk dari dua asam amino atau lebih. Ikatan amida antra suatu gugus a-amino dari suatu asam amino dan gugus karboksil dari asam amino lain disebut ikatan peptida. Contoh peptida berikut yang dibentuk dari alanina dan glisina, disebut alanilglisina, menggambarkan suatu ikatan peptida.

Gbr 1. Ringkasan reaksi asam-asam amino.
Tiap asam amino dalam suatu molekul peptida disebut suatu satuan (unit) atau suatu residu. Alanilglisina mempunyai dua residu : residu alinina dan residu glisina. Bergantung pada banyaknya satuan asam amino dalam molekul itu, maka suatu peptida dirujuk sebagai dipeptida, suatu tripeptida, dan seterusnya.
Suatu polipeptida ialah suatu peptida dengan banyak sekali residu asam amino. Apa perbedaan suatu polipeptida dan suatu protein? Sebenarnya tidak ada. Keduanya adalah poliamida yang tersusun dari asam-asam amino. Menurut perjanjian, suatu poliamida dengan residu asam amino kurang dari 50 dikelompokan sebagai peptida, sedangkan poliamida yang lebih besar dianggap sebagai protein.
Dalam dipeptida alanilglisina itu, residu alanina memiliki gugus amino bebas dan satuan glisina mempunyai suatu gugus karboksil bebas. Namun alanina dan glisina dapat digabungkan dengan cara lain untuk membentuk glisilalanina.Dalam mana glisina mempunyai gugus amino bebas dan alinina mempunyai gugus karboksil bebas.
Dua peptide yang berlainan dari alinina dan glisinia : Makin banyak residu asam amino dalam suatu peptida, makin banyak kemungkinan strukturnya. Glisina dan alanina dapat digabung menurut enam cara yang berbeda. Sepuluh asam amino berlainan dapat menghasilkan lebih dari empat trilyun (1012) dekapeptida.
Untuk tujuan pembahasan diperlukan untuk menyatakan peptoda dengan cara yang sistematik. Asam amino dengan gugus amino bebas biasanya ditaruh pada ujung kiri struktur itu. Asam amino ini disebut asam amino N-ujung. Asam amino dengan gugus karboksil bebas ditaruh di ujung kanan disebut asam amino C-ujung. Nama peptida terdiri dari nama asam amino seperti pemunculannya dari kiri kekanan, dimulai dari asam-amino N-ujung.

Tata nama peptida

Tata nama peptida diberikan berdasarkan atas jenis asam amino yang membentuknya. Asam amino yang gugus karboksilnya bereaksi dengan gugus –NH2 diberi akhiran –il pada namanya, sedangkan urutan penamaan didasarkan pada urutan asam amino, dimulai dari asam amino ujung yang masih mempunyai gugus –NH2.
Contoh peptida:
Sifat-Peptida
Sifat
 peptida ditentukan oleh gugus –NH2, gugus –COOH, dan gugus R. Sifat asam dan basa ditentukan oleh gugus –COOH dan –NH2, namun pada peptida rantai panjang, gugus –COOH dan –NH2 tidak lagi berpengaruh. Suatu peptida juga mempunyai titik isoelektrik seperti pada asam amino.
Ikatan Peptida
Tripeptida

Analisis dan Sintesis Peptida
Untuk memperoleh informasi tentang peptida tidak cukup dengan mengetahui jenis dan banyaknya molekul asam amino yang membentuk peptida, tetapi diperlukan keterangan tentang urutan asam- asam amino dalam molekul peptida. Salah satu cara untuk menentukan urutan asam amino ialah degradasi Edman yang terdiri atas dua tahap reaksi, yaitu reaksi pertama ialah reaksi antara peptida dengan fenilisotiosianat dan reaksi kedua ialah pemisahan asam amino ujung yang telah bereaksi dengan fenilisotiosianat. Cara lain adalah sintesis fasa padat.
Sintesis peptida dilakukan dengan menggabungkan gugus karboksil salah satu asam amino dengan gugus amina dari asam amino yang lain. Sintesis peptida dimulai dari C-terminus (gugus karboksil) ke N-terminus (gugus amin), seperti yang terjadi secara alami pada organisme. Namun, untuk mensintesis peptida, tidak semudah mencampurkan asam amino begitu saja. Seperti contohnya: mencampurkan glutamine (E) dan serine (S) dapat menghasilkan E-S, S-E, S-S, E-E, dan bahkan polipeptida seperti E-S-S-E-E. Untuk menghindari asam amino berikatan tidak terkendali, perlu dilakukan perlindungan dan kontrol terhadap ikatan peptida yang akan terjadis sehingga ikatan yang terbentuk sesuai dengan yang diinginkan. Langkah-langkah sintesis peptida adalah sebagai berikut: asam amino ditambahkan gugus proteksi. Kemudian asam amino yang diproteksi dilarutkan dalam pelarut seperti dimetyhlformamide (DMF) yand digabungkan dengan coupling reagents dipompa melalui kolom sintesis. Grup proteksi dihilangkan dari asam amino melalui reaksi deproteksi. Kemudian pereaksi deproteksi dihilangkan agar tercipta suasana penggabungan yang bersih. Coupling reagents, contohnya N,N'-dicyclohexylcarbodiimide (DCCI), membantu pembentukan ikatan peptida. Setelah reaksi coupling terbentuk, coupling reagents dicuci untuk menciptakan suasana deproteksi yang bersih. Proses proteksi, deproteksi, dan coupling ini terus dilakukan berulang-ulang hingga tercipta peptida yang diinginkan.

Kelas Peptida

Peptida dapat dikelompokkan menurut kemiripan struktur dan fungsinya.

Peptida Ribosomal

Peptida ribosomal disintesis dari translasi mRNA. Peptida ini berfungsi sebagai hormon dan molekul signal pada organisme tingkat tinggi. Secara umum, peptida ini mempunyai strukstur linear.

Peptida non-Ribosomal

Peptida non-Ribosomal disintesis dengan kompleks enzim. Peptida ini terdapat pada organisme uniselular, tanaman, dan fungi. Pada peptida ini terdapat struktur inti yang kompleks dan mengandung pengaturan yang berbeda-beda untuk melakukan manipulasi kimia untuk menghasilkan suatu produk. Secara umum, peptida ini berbentuk siklik, walaupun ada juga yang berbentuk linear.

Peptida Hasil Digesti (Digested peptides)

Peptida ini terbentuk dari hasil proteolisis non-spesifik dalam siklus digesti. Peptida hasil digesti secara umum merupakan peptida ribosomal, akan tetapi tidak dibentuk dari translasi mRNA. Peptida ini juga dapat dibentuk dari protein [yang didigesti dengan proteasespesifik, seperti digesti trypsin yang sering dilakukan sebelum mass spectrometry peptide analysis.

Ikatan Peptida merupakan ikatan yang terbentuk ketika atom kaarbon pada gugus karboksill suatu molekul berbagi elektron dengan atom nitrogen pada gugus amina molekul lainnya. Reaksi yang terjadi merupakan reaksi kondensasi, hal ini ditandai dengan lepasnya molekul air ketika reaksi berlangsung.  Hasil dari ikatan ini merupakan ikatan CO-NH, dan menghasilkan molekul yang disebut amida. Ikatan peptida ini dapat menyerap panjang gelombang 190-230 nm.

Cara Memutus Ikatan Peptida

Ikatan peptida dapat dirusak atau diputus dengan melakukan hidrolisis. Ikatan peptida terbentuk dari protein yang mempunyai kecenderungan untuk putus secara spontan ketika terdapat air. Dari hasil pemutusan tersebut, dilepaskan energi sebesar 10 kJ/mol. Namun, proses pemutusan terjadi sangat lambat. Pada umumnya, organisme menggunakan enzim untuk membantu proses pemutusan atau pembentukan ikatan peptida untuk mempercepat reaksi.
 Dua molekul asam amino dapat saling berikatan membentuk ikatan kovalen melalui suatu ikatan amida yang disebut dengan ikatan peptida. Ikatan kovalen ini terjadi antara gugus karboksilat dari satu asam amino dengan gugus α amino dari molekul asam amino lainnya dengan melepas molekul air. Secara sederhana mekanisme reaksi pembentukan ikatan kovalen dapat dilihat Gambar 14.26.
Gambar 14.26. Mekanisme pembentukan ikatan peptida sebagai rantai protein
Tiga molekul asam amino dapat bergabung membentuk dua ikatan peptida, begitu seterusnya sehingga dapat membentuk rantai polipeptida.
Peptida memberikan reaksi kimia yang khas, dua tipe reaksi yang terpenting yaitu hidrolisis ikatan peptida dengan pemanasan polipeptida dalam suasana asam atau basa kuat (konsentrasi tinggi). Sehingga dihasilkan asam amino dalam bentuk bebas.
Hidrolisa ikatan peptida dengan cara ini merupakan langkah penting untuk menentukan komposisi asam amino dalam sebuah protein dan sekaligus dapat menetapkan urutan asam amino pembentuk protein tersebut.
Peptida atau polipeptida bebas juga merupakan molekul aktif penyusun hormon yang memiliki aktifitas biologis dalam tubuh manusia, seperti pada hormon insulin, glukagon dan kortikotropin. Insulin mengandung dua rantai polipeptida, satu polipeptida mengandung 30 residu asam amino dan yang lain mengandung 21 residu asam amino. Kortikotropin mengandung 39 residu asam amino dan hormon oksitosin hanya mengandung 9 residu asam amino.
Protein sebagai makromolekul (molekul besar) mampu menunjukkan berbagai fungsi biologi. Atas dasar peran ini maka rotein dapat diklasifikasikan sebagai berikut ; enzim, protein transport, protein nutrient dan penyimpan, protein kontraktil atau motil, protein struktural, protein pertahanan dan protein pengatur.
Enzim, merupakan protein yang dapat berfungsi sebagai katalisator. Hampir seluruh reaksi kimia yang terjadi di tingkat sel dikatalisis oleh enzim. Beberapa contoh enzim yang banyak dimanfaatkan saat ini seperti, glukosa oksidase yang mengkatalisis glukosa menjadi asam glukonat, urikase yaitu enzim yang dapat membongkar asam urat menjadi alantoin. Saat ini sudah ditemukan lebih dari 2000 jenis macam enzim yang mengkatalisis reaksi kimia yang spesifik dan ditemukan dalam berbagai bentuk kehidupan.
Protein transport adalah protein yang dapat mengikat dan membawa molekul atau ion yang khas dari satu organ ke organ lainnya. Contoh protein transport yang mudah adalah mioglobin yang menyimpan dan mendistribusikan oksigen ke dalam otot, perhatikan Gambar 14.28.
Gambar 14.28. Mioglobin yang mendistribusikan oksigen ke otot.
Hemoglobin juga merupakan protein transport yang terdapat dalam sel darah merah. Hemoglobin dapat mengikat oksigen ketika darah melalui paru-paru. Oksigen dibawa dan dilepaskan pada jaringan periferi yang dapat dipergunakan untuk mengoksidasi nutrient (makanan) menjadi energi. Pada plasma darah terdapat lipoprotein yang berfungsi mengangkut lipida dari hati ke organ. Protein transport lain yang terdapat dalam membran sel berperan untuk membawa beberapa molekul seperti glukosa, asam amino dan nutrient lainnya melalui membran menuju sel.
Protein nutrient sering disebut juga protein penyimpanan, protein ini merupakan cadangan makanan yang dibutuhkan untuk pertumbuhan dan perkembangan. Beberapa contoh protein ini, sering kita temukan dalam kehidupan sehari-hari seperti ovalbumin merupakan protein utama putih telur, kasein sebagai protein utama dalam susu. Contoh lainnya adalah protein yang menyimpan zat besi yaitu ferritin yang terdapat di dalam jaringan hewan.
Protein kontraktil juga dikenal sebagai protein motil, di dalam sel organisme protein ini berperan untuk bergerak seperti aktin dan myosin. Kedua protein ini merupakan filament yang berfungsi untuk bergerak di dalam sistem kontraktil dan otot kerangka. Contoh lainnya adalah tubulin pembentuk mikrotubul merupakan zat utama penyusun flagel dan silia yang menggerakkan sel.
Protein struktural, jenis protein ini berperan untuk menyangga atau membangun struktur biologi makhluk hidup. Misalnya kolagen adalah protein utama dalam urat dan tulang rawan yang memiliki kekuatan dan liat. Persendian mengandung protein elastin yang dapat meregang dalam dua arah. Jenis lain adalah kuku, rambut dan bulu-buluan merupakan protein keratin yang liat dan tidak larut dalam air.
Protein juga dapat digolongkan berdasarkan bentuk dan proses pembentukan serta sifat fisiknya. Terdapat empat struktur protein yaitu struktur primer, sekunder, tersier dan kuartener. Selain penggolongan juga sering dilakukan sebagai sebagai protein serabut atau dan protein globular.
Struktur primer adalah rantai polipeptida sebuah protein terdiri dari asam-asam amino yang dihubungkan satu sama lain secara kovalen melalui ikatan peptida yang membentuk rantai lurus dan panjang sebagai untaian polipeptida tunggal, seperti pada Bagan dibawah.
Bagan 14.29. Struktur primer sederhana yang disusun oleh 4 jenis asam amino
Struktur yang kedua adalah struktur sekunder. Pada struktur sekunder, protein sudah mengalami interaksi intermolekul, melalui rantai samping asam amino. Ikatan pembentuk struktur ini didominasi oleh ikatan hidrogen antar rantai samping yang membentuk pola tertentu bergantung pada orientasi ikatan hidrogennya. Ada dua jenis struktur sekunder, yaitu: D-heliks dan β-sheet (lembaran). Gambar 14.30 menunjukkan protein dengan struktur sekunder dengan bentuk α-heliks.
Gambar 14.30. Protein dengan struktur α-heliks
Struktur protein sekunder dalam bentuk βsheet. Untuk mengenal dan mudah dalam mengidentifikasi dan membedakan kedua struktur, maka bentuk disajikan pada Gambar 14.31 pada halaman berikut.
Gambar 14.31. Protein dengan struktur sekunder
Struktur tersier merupakan struktur yang dibangun oleh struktur primer atau sekunder dan distabilkan oleh interakasi hidrofobik, hidrofilik, jembatan garam, ikatan hidrogen dan ikatan disulfida (antar atom S) sehingga strukturnya menjadi kompleks. Protein globular dan protein serbut/serat atau fiber merupakan contoh struktur tersier.
Protein Globular, merupakan protein yang larut dalam pelarut air dan dapat berdsifusi dengan cepat, dan bersifat dinamis lihat Gambar 14.32, dimana seluruh interaksi antar struktur sekunder atau primer terviasualisasi dengan baik.
Protein serabut bersifat tidak larut dalam air merupakan molekul serabut panjang dengan rantai polipeptida yang memanjang pada satu sumbu dan tidak berlipat menjadi bentuk globular.
Jenis protein ini memiliki peran sebagai penyangga dan sebagai pelindung. Untuk struktur fiber disajikan pada Gambar 14.33, di bawah ini.
Gambar 14.33 Struktur tersier untuk protein fiber
Struktur kuartener merupakan hasil interaksi dari beberapa molekul protein tersier, setiap unit molekul tersier disebut dikenal dengan subunit.
Setiap subunit protein struktur tersier dapat berinteraksi dan saling mempengaruhi satu sama lain, interaksi tersebut dapat mengubah struktur maupun peran dan fungsinya. Molekul protein kuartener ditampilkan pada Gambar 14.34. Pembentukan struktur kuartener protein menyebabkan bagian nonpolar protein tidak terpapar pada lingkungan yang berair.
Gambar 14.34. Gambar struktur kuartener yang diwakili oleh molekul hemoglobin.
Sehingga protein yang memiliki bagian nonpolar yang panjang dapat larut dalam air. Hemoglobin merupakan contoh protein yang membentuk struktur kuartener dengan 4 subunit (2 sub unit α dan 2 subunit β). Beberapa protein menjadi aktif ketika membentuk struktur kuartener, namun ada juga protein yang aktif ketika struktur kuartenernya terdisosiasi menjadi subunitnya.
Pembentukan keempat struktur protein dapat disarikan ke dalam bagan pada Gambar di bawah ini.
Gambar 14.35. Mekanisme pembentukan struktur tersier dari tahapan yang sederhana
Denaturasi protein merupakan suatu keadaan dimana protein mengalami perubahan atau perusakan struktur sekunder, tersier dan kuartenernya. Denaturasi ini dapat disebabkan oleh beberapa faktor diantaranya pemanasan, suasana asam atau basa yang ekstrim, kation logam berat dan penambahan garam jenuh.
Pemanasan dapat menyebabkan pemutusan ikatan hidrogen yang menopang struktur sekunder dan tersier suatu protein sehingga menyebabkan sisi hidrofobik dari gugus samping polipentida akan tebuka.
Hal ini menyebabkan kelarutan protein semakin turun dan akhirnya mengendap dan menggumpal peristiwa ini dinamakan koagulasi. Perubahan pH yang sangat ekstrim akhibat penambahan asam kuat atau basa kuat akan merusak interaksi ionik yang terbentuk antar gugus R polar dari asam amino penyusun protein. Hal ini juga berakhibat sama pada perusakan struktur protein. Kehadiran ion logam berat dapat memutuskan ikatan disulfida (S-S) yang menstabilkan tekukan – tekukan yang dibentuk oleh polipeptida dalam membangun struktur protein, lihat Gambar 14.36.
Gambar 14.36. Pemanasan telur ayam merupakan contoh denaturasi protein
Penambahan larutan garam encer pada protein globular akan meningkatkan kelarutan protein. Beberapa interaksi hidrofilik antara molekul protein dan air akan semakin kuat dengan kehadiran garam pada konsentrasi rendah peristiwa ini dinamakan salting in. Namun apabila larutan garam pekat yang ditambahkan maka kelarutan protein akan menurun.
 Kehadiran garam pada konsentrasi tinggi menyebabkan peristiwa solvasi air pada molekul protein berpindah ke garam sehingga menurunkan tingkat kelarutan protein. peristiwa ini disebut salting out.
Beberapa jenis protein fungsional seperti enzim dan hormon yang telah terdenaturasi akan kehilangan sifat dalam biokatalisisnya. Hal ini menyebabkan terhambatnya beberapa jenis reaksi biokimia yang dikatalisis oleh enzim atau hormon yang bersangkutan.
Apabila berada pada kondisi yang sesuai, protein yang telah terdenaturasi akan dapat mengalami renaturasi atau penyusunan kembali struktur protein yang meliputi struktur sekunder, tersier dan kuartenernya. Peristiwa denaturasi protein dapat kita jumpai dalam kehidupan sehari – hari, seperti saat kita memanaskan putih telur, sterilisasi peralatan gelas dengan autoclave, dan sebagainya















BAB III
PENUTUP
1.   Kesimpulan
1.      Peptida merupakan molekul yang terbentuk dari dua atau lebih asam amino. Jika jumlah asam amino masih di bawah 50 molekul disebut peptida, namun jika lebih dari 50 molekul disebut dengan protein.
2.   Pengelompokan protein didasarkan pada bentuknya, hasil hidrolisis, gugus alkil pada rantai protein dan sumber asalnya.
3.    Tiga molekul asam amino dapat bergabung membentuk dua ikatan peptida, begitu seterusnya sehingga dapat membentuk rantai polipeptida.
4.  Sintesis peptida dilakukan dengan menggabungkan gugus karboksil salah satu asam amino dengan gugus amina dari asam amino yang lain. Sintesis peptida dimulai dari C-terminus (gugus karboksil) ke N-terminus (gugus amin), seperti yang terjadi secara alami pada organisme.
















DAFTAR PUSTAKA

1.    Online. http:// Asam Amino | Sifat-sifat Asam Amino |. (Diakses 23 April 2012).
2.    Online. http:// KODE GENETIK | SINTESIS PROTEIN. (Diakses 23 April 2012).
3.    Patta, Muis.  2011. Kimia Organik Sekolah Menengah Analis Kimia. Makassar.
4.    Online. http://pengertian-peptida-50371629082011.htm. (Diakses 23 April 2012).


Tidak ada komentar:

Poskan Komentar